DIGITAL CHIP FABRICATION SNN Hardware Neuron

<u>SDMay23-28</u> Tyler Green, Katherine Gisi, Aaron Sledge, William Zogg, Fulai Zhu <u>Mentor/Client</u> Henry Duwe

INTRODUCTION

- Current lack of opportunity for chip creation, bring-up, and fabrication
- Growing environment for opensource silicon
- Lack of knowledge base

OVERVIEW

- Silicon prove a digital spiking neural network (SNN)
- Develop tutorial documentation
- Research and create bring-up plan

METHODOLOGY

IMPLEMENTTION

Architecture:

- Input: Handwritten Digit. 9 x 9 array of brightness values. "Pixel image"
- <u>Output</u>: Spikes for each digit (0-9), the highest spike is the classification
- 8 states, 1 neuron unit to implement a Leaky Integrate and Fire (LIF) model

Load

- Image pixel values from MNIST
- Weights from pretrained snnTorch
 network
- Addresses from CPU

Generate

- Rate encoded quantifies number of spikes in a time interval
- Pseudo random number generator seeded with image values
- If spike pixel "propagates"

Integrate

- Send data to neuron to add according to weights
- Build up Membrane voltage
 Leak
- Leak membrane voltage each time step
- Decay is dictated by a parameter Beta

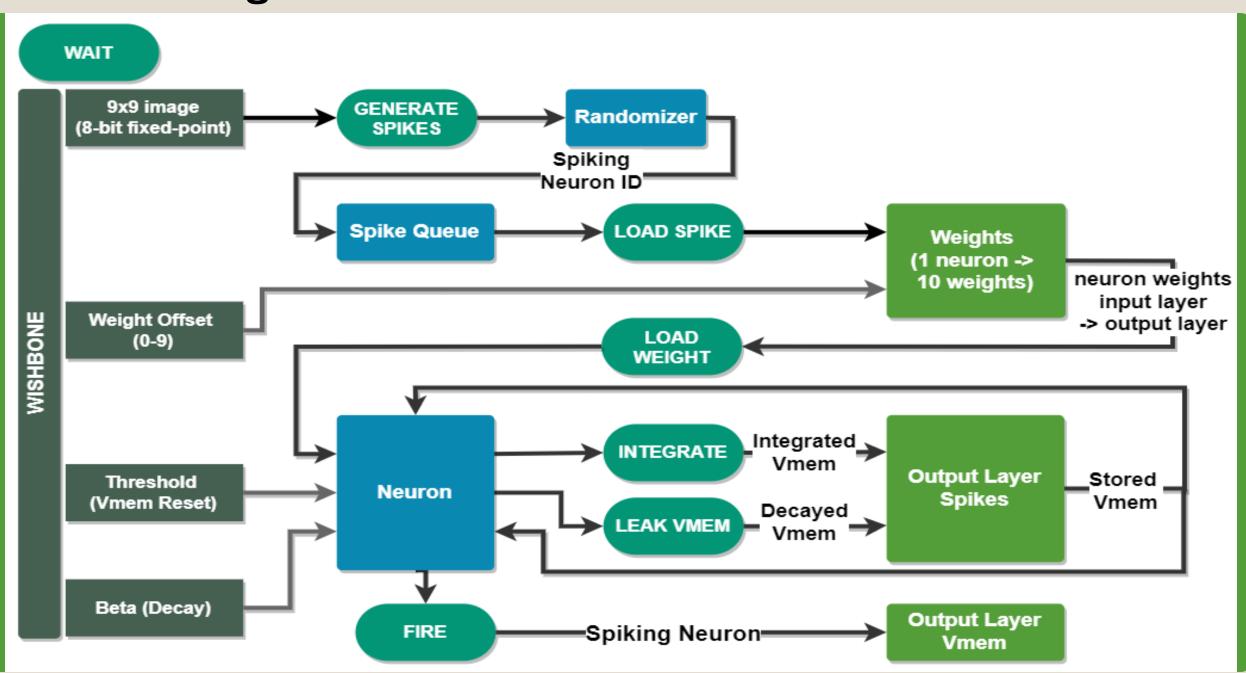
Fire

• Fire according to accumulated

- OpenMPW Program provides infrastructure and fabrication
- MNIST data set offers a network and test values
- Design Requirements
 - Digital configuration
 - 10 square millimeter area
 - Pass prechecks
- Documentation Requirements
 - Meticulously detailed guide for beginner level user

Manufacturing EFABLESS

 Doped Silicon creates Transistors
 Transistors create Invertors
 Invertors create Logic

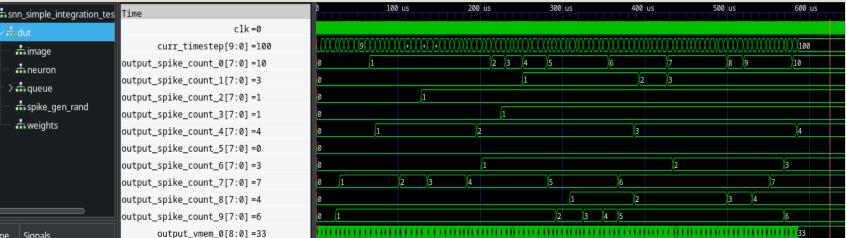

Process Design Kit SKYWATER

Logic Combinations create Standard Cells

- Standard Cells are Speced for Fabrication
- Specs Distributed as Process Design Kit (PDK)

Hardware

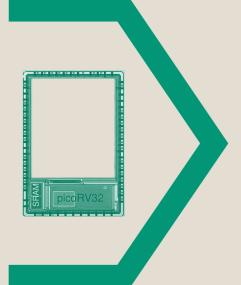
Data Flow Diagram



CHALLENGES/SOLUTIONS AND OUTCOMES

Understanding the Efabless Process

- Unthoroughly documented/ trouble shot
- Unavailable


Simulation Results

membrane voltage at neuron ID

Description CARAVEL HARNESS / USER AREA

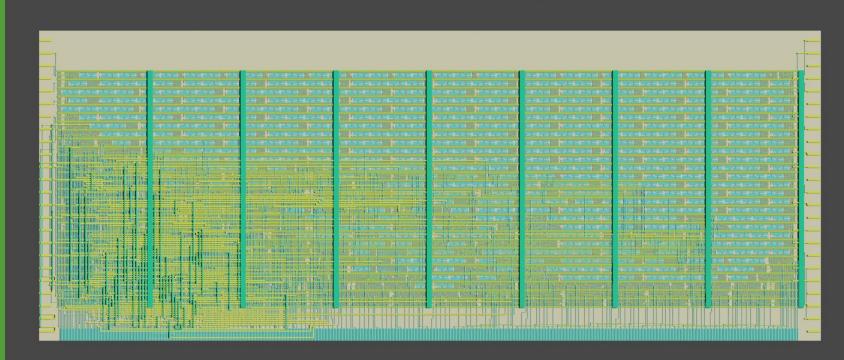
Verilog Defines User
 Functionality
 Wrapper to
 Standardize Designs

ASIC Flow OPENLANE

- Map Verilog to Netlist
- Place Cells in Area
- Connect Power & Clock
- Define Fabrication Masks

- Basis for SNN accelerator unit
- Contribution to the Open-Source Silicon Community
- Inspire and empower students in the field of digital design
- Documentation for more teams and future classes

Shuttles


Memory Challenges

- SRAM macro
- Design usage
 experimentation
- Space Challenges

CONCLUSION

• Downsize network in software before

Control Logic Rendering

In designing a digital neuron ASIC, there were a couple major outcomes.

- Submission ready (simulated and hardened) digital neuron design
- Bring-Up plan for use when physical chip is delivered
- Public GitLab repository with SNN for community use
- 38+ Pages of Documentation Detailing:

Environment Set-Up	Getting Started	Submission
Daughter & Carrier Board	Wishbone Bus	Bring-Up
Interrupts	Logic Analyzer	GPIO

There is great potential for open-source ASICs in education and industry. This project provides a basis for future projects whether students at ISU or individuals in the Open-source SI ecosystem.

